
Adaptive Data Confidence Using Cyclical Gaits On A Modular Snake
Robot

Benjamin H. Morse and Howie Choset

Abstract— We are interested in gaining situational awareness
and autonomy from modular snake robots. Modular snake
robots exhibit undulatory motions which can cause odometry
algorithms to be irrelevant due to direction of the snake’s
camera, or give bad data due to vibration or velocity of the
camera. This paper presents a technique for leveraging internal
shape data and cyclical gait information for data validation of
sensors rigidly attached to the snake robot. This validation is
described using a function that relates the reliability of sensor
data to the internal shape of the robot within a gait cycle.
We use a recently developed technique for choosing a “good”
frame on such a robot to create a substitution for a motion
model. We demonstrate the advantages of our technique using
a KinectTMperforming an open-source implementation of 6-
DOF SLAM. The output of the SLAM algorithm with the
data validation is compared qualitatively to the output of the
SLAM algorithm without the data validation. Other potential
applications of the technique are mentioned.

I. INTRODUCTION

Modular snake robots equipped with sensors have shown
potential for locomoting within difficult-to-access environ-
ments. These sensors allow the robots to send back data to
accomplish various tasks, and also to increase the situational
awareness of the robots and their operators. This situational
awareness is paramount to the operation of the robots, as
they move erratically and their movement depends largely
on terrain. Periods of erratic motion happen predictably
according to the gait cycle, but can affect the reliability
of sensor data due to poor alignment of sensors with the
world. Fast changes in the orientation of the sensor makes
using the data for certain algorithms very unreliable. On
wheeled robots, these problems are minimized due to a
smooth motions and an obvious body frame of reference
providing a simple static location for sensors.

We propose a technique that uses a function to map a
particular shape of the robot within a gait to the validity
of the data from a given sensor. We talk about how these
functions apply to filtering techniques and we give example
functions as they apply to gaits on a 16-DOF modular
snake robot, showing how the functions might be generated.
These functions also are informative for new methods of
gait controls. We suggest applications that generalize beyond
modular snake robots.

We use the Microsoft KinectTMsensor with an open-source
implementation of 6-DOF Simultaneous Localization and
Mapping (graphSLAM) to compare SLAM with no data
validation to SLAM with data validation informed by the

Benjamin H. Morse and Howie Choset are with the Robotics In-
stitute at Carnegie Mellon University, Pittsburgh, PA 15213. Email:
{bmorse@andrew, choset@cs}.cmu.edu.

Fig. 1: 16-DOF snake robot.

snake robot’s control software. Several gaits are run and
the pose graphs and maps produced by the graphSLAM
algorithm are compared and explained qualitatively.

II. PRIOR WORK

This paper builds on extensive prior work on filtering
algorithms and other methods of sensor fusion. The func-
tion based technique presented in this paper is based on
applications using Information and Kalman Filters [1]. The
Extended Kalman Filter [2] extends the Kalman Filter to
nonlinear domains and is very widely used to model predic-
tions and uncertainty in the face of imperfect sensing and
motion models.

The robot featured in this paper has many gaits that are
based on a common mathematical framework [3] [4]. Several
of these gaits are combined to form a set of motion primitives
used to move the robot in a controllable manner. These gaits
lack motion models, because the motion realized from the
internal shape change varies with the terrain that the gaits
are executed on, and the dynamics are complex.

In order to generate the functions used with the technique
in this paper, a new method of finding intuitive body frames
is used. The method will generate a body frame that separates
the internal and external motion of the robot. This concept
called virtual chassis [5] allows a shape stable method of
determining the relative orientation of the sensor in question
to the principal axis of the snake (which tends to be closely
related to the direction of motion of each gait). This infor-
mation helps to form a pseudo motion model, which informs
the technique on what data to trust.



Fig. 2: Hardware setup for KinectTMsensor mounted on a
snake robot

The benchmark that this paper uses to evaluate the effects
of the technique is GraphSLAM from Thrun and Montemerlo
[6]. It uses a sparse graph to represent all of the linear
constraints on the robot poses and map feature positions,
where each edge is a constraint, and each node is a pose or
map feature. This allows for efficient optimization of past
data, so that future readings can update the prediction on
current and past pose and map estimates. This also scales
relatively well with the number of features in the world, as
long as the graph remains sparse (every feature should only
be seen from a few pose estimate positions).

III. APPROACH

A. Normalized Phase

The first tool that is used to identify gait position in
relation to sensor position is normalized phase. Normalized
phase, denoted φ is a number from 0 to 1 that represents
how far through a particular gait the robot is. The equation
below shows the general equation for snake robot gaits.

α(n, t) =

{
βv +Av sin(θ), for lateral modules,
βh +Ah sin(θ + δ), for dorsal modules,

(1)
θ =

(
dθ
dnn+ dθ

dt t
)

where β, A, θ, and δ are respectively offset, amplitude,
frequency, and lateral-dorsal phase shift. The spatial com-
ponent dθ

dn describes the frequency of the shape of the robot
and the temporal component dθdt determines the frequency of
the actuator cycles. n and t are module number and time
respectively. A zero value for dθ

dn causes identical angles on
all of the modules on one axis, generating an arc (or possibly
a straight line) along that axis. A zero value for dθ

dt has the
effect of holding the robot in a static shape. δ is simply a
phase shift to control the timing between the motions of the
two orthogonal waves, producing a variety of gaits. The βh
term is generally used to steer the robot when locomoting
on the ground.

In this case, the normalized phase of a gait using this
model can be computed from θ

2π .

B. Trust Function

The technique in this paper involves a function that the
user generates called the trust function. This function is a
mapping of normalized phase to the apparent reliability of
the sensor. We denote the trust function G(φ)

G : [0, 1]→ [0, 1] (2)

This trust function’s numbers can be simply transformed to
have canonical meaning. A value of zero means the controller
should ignore where a value of one means the controller
should treat the data from the sensor with the standard sensor
model for that sensor. Numbers in between represent a factor
of uncertainty associated with that sensor.

A simple example of the application of the trust function
involves using notation from Information Filters [7]. When
dealing with the sensor model for each sensor used in an
Information Filter, a information value is used to determine
information gain, which is the amount of certainty gained
from a sensor reading. This is usually a static value that
is tuned to fit the sensor under all circumstances. In our
technique, the information value for the sensor at a given
normalized phase could be expressed as the information gain
specified by the sensor model multiplied by the trust value
at that normalized phase.

I(φ) = IStaticG(φ) (3)

Thus when the trust is zero, the information is zero, which
should be interpreted as ignoring the sensor data for that
iteration. This translates in a less elegant fashion into the
measurement covariance matrix R for the Kalman Filter,
where a zero trust value would yield an infinite covariance.

R(φ) =
RStatic
G(φ)

(4)

C. Function Generation

For this paper, visual odometry is the primary thrust
considered in function generation. Here two factors can
contribute to a sensor being unreliable: deviation of the
sensor from the direction of motion and velocity (both
angular and linear) of the sensor. These factors are necessary
to consider as visual odometry requires large number of
features to be shared between subsequent frames in order
to get a reliable camera transformation estimate, and large
velocities on the camera will cause motion blur which will
completely invalidate frames. These factors might be used
to generate smooth functions or step functions to represent
trust, depending on the application and the desire amount
of data to be processed. If throwing out data does not seem
like a good option, a smooth function that distrusts but does
not ignore data would be an appropriate solution, whereas
an application where data can be discarded might allow for a
step function approach. We used step functions for our trust
functions so as to save memory and runtime.

For this paper, we assumed the snake robot would be
moving through the trusted region of the gait at low enough



(a) Time Lapse Poses of Slither Gait (b) Time Lapse Poses of Sidewind Gait

Fig. 3: Example of Slither and Sidewind gaits virtual chassis results. Here poses that align the head with the long axis of
the virtual chassis are bold, and the poses with the most extreme angular deviation of the head from the long axis of the
virtual chassis are faded to show the erratic motions within the gait. The red lines represent the long axis of the virtual
chassis frame which is the first principal moment of inertia of the snake.

speeds so as to not cause motion blur, and therefore the only
factor used in function generation was the alignment with
the direction of motion. Examples of the explicit functions
are generated and explained below.

IV. ROBOT IMPLEMENTATION

The modular snake robots utilize many gaits whose direc-
tion of motion roughly correspond to one of the principal
moments of inertia of the system of all the snake modules.
The principle moment of inertia of the snake tends to be
stable to the shape of the robot. Therefore having the head
align with the first principal moment of inertia of the snake
will either cause the head to be looking in the direction of
motion, or perpendicular to it. Both of these motions are
easily accounted for by a visual odometry algorithm.

To calculate the deviation from the first principal moment
of inertia, we use the joint angles generated by the gait
function at each phase to generate transforms between each
module, then find the head module frame and transform
that resulting frame into the virtual chassis frame of the
snake robot. Then the resulting 3-dimensional homogeneous
transform matrix is in the form:

Hhead =


rxx′ rxy′ rxz′ tx
ryx′ ryy′ ryz′ ty
rzx′ rzy′ rzz′ tz
0 0 0 1

 (5)

The camera points along the z-axis of the head module,
so we extract the direction vector of the head module.

dirhead =

 rxz′

ryz′

rzz′

 (6)

To calculate the angle of deviation we use the direction
vector for the first principal moment of inertia of the system,
dirvc.

θhead = acos(dirhead · dirvc) (7)

Based on the way the virtual chassis is calculated, in this
paper the first principal moment of inertia direction is always
along the +x axis.

dirvc =

 1
0
0

 (8)

A. Slither

The modular snake robot uses the slither gait as its primary
means of forward locomotion. This gait causes lots of erratic
motion in the back half of the snake, while keeping the
front of the snake more stable, however the head of the
snake varies depending on the amplitude. Using an lateral
and dorsal amplitude of π

5 and a phase per module of 1
8 for

x and 1
14 for y, the head deviates as much as 18◦ in each

direction from the first principal moment of inertia provided
by the virtual chassis. Fig. 3a shows the centered and extreme
poses in one cycle of the slither gait. Here the bold snake
pose has the head centered, while the faded poses show the
head at its extreme points.

Fig. 4a shows the angular deviation of the head module
with respect to the normalized phase. This leads to a cor-
responding trust function that is 1 from normalized phase
0.07 to 0.08 and 0.57 to 0.58 and is 0 everywhere else. It is
also evident from this graph that the angular velocity of the
head is highest at these times, so if this gait is being cycled
at high speed, a small pause should be added at these valid
regions.

B. Sidewind

The modular snake robot uses the sidewind gait as a
very efficient way of moving sideways and also up inclines.
This gait moves erratically along the entire snake. Using an



(a) Angular Deviation of Slither Gait (b) Angular Deviation of Sidewind Gait

Fig. 4: This graph shows the angular deviation of the head module from the first principal moment of inertia provided by
the virtual chassis, plotted against the normalized phase for a) the slither gait and b) the sidewind gait. The trusted regions
here are located around the local minima.

amplitude of 0.6 and a phase per module of 0.0465, the head
deviates from the first principal moment of inertia by just
over 103◦ in each direction. Fig. 3b shows the centered and
extreme poses in one cycle of the slither gait. Here the bold
snake poses have the head aligned with the first principal
moment of inertia, while the faded poses show the head at
its extreme points.

Fig. 4b shows the angular deviation of the head module
with respect to the normalized phase. This leads to a corre-
sponding trust function that is 1 from normalized phase 0.34
to 0.35 and 0.84 to 0.85 and is 0 everywhere else. It is also
evident from this graph that the angular velocity of the head
is highest at these times, so if this gait is being cycled at
high speed, a small pause or slowdown should be added at
these valid regions.

V. RESULTS

A. Setup

Our method uses open-source code provided through the
Robot Operating System (ROS) infrastructure. The code
package is entitled RGBDSLAM and is provided by Felix
Endres et al. from the University of Freiburg 1. We interface
the sensor to this package using open source drivers for
the Kinect that are now integrated into a ROS node. The
underlying algorithm is GraphSLAM, creating a posterior
for full 6 DOF path and 3D colorized point cloud map of
the environment.

The experiments for this paper were run on a 6-core 3.5
GHz desktop computer with 8 GB of RAM. We run the di-
amondback release of ROS. The RGBDSLAM code is from
https://svn.openslam.org/data/svn/rgbdslam/trunk repository
at revision 11. Fig. 2 shows the hardware configuration of

1http://www.ros.org/doc/api/rgbdslam/html/index.html

the snake robot. Here the KinectTMis attached to the head
of the snake robot, directly above the analog camera. It is
important to note that the Kinect sensor is mounted to be at
a 30◦ angle above the z-axis of the head module.

The SLAM software uses the grayscale images from the
Kinect’s camera for visual odometry. The software supports
many different feature detectors through OpenCV (Intel
Corporation, Santa Clara, CA), but for this paper the Speeded
Up Robust Features (SURF) detector was used [8]. Feature
matching and Random Sampling Consensus (RANSAC) [9]
are used to estimate the transformation between frames.
Feature matching is enhanced using the Fast Library for
Approximate Nearest Neighbors (FLANN) [10]. There are
several conditions that must be met for a node to be added
to the graph. First, a frame must have sufficient features so
that it can be matched robustly. To prevent unrelated frames
from sharing an edge in the graph, the code compares the
number of matches between nodes to a hit threshold.

We ran two experiments in the lab using objects along one
wall to provide features for the visual odometry algorithm
to use. Two different gaits were tested using the functions
and technique designed above. These experiments were run
in order to compare the map and pose graph outputs of the
GraphSLAM algorithm between the filtered sensor data and
the unfiltered data.

B. Slither

The slither gait was tested over multiple cycles moving
mostly forward several feet. During the test the gait was
cycled at low speed, to allow the unfiltered data to produce
a map. Fig. 5a shows a map generated from unfiltered sensor
data. Here the map has many errors and does not correctly
rectify the position and size of the large black pvc pipe
apparatus present in the center of the image. Fig. 5b shows



(a) Map Generated for Slither Gait without Filtering (b) Map Generated for Slither Gait with Filtering

Fig. 5: These maps were generated by the open-source SLAM software, both of the same area using the slither gait. These
were generated a) without trust function filtering and b) with trust function filtering.

(a) Map Generated for Sidewind Gait without Filtering (b) Map Generated for Sidewind Gait with Filtering

Fig. 6: These maps were generated by the open-source SLAM software, both of the same area using the sidewind gait.
These were generated a) without trust function filtering and b) with trust function filtering.

the map generated from a similar run using the trust-function
approach. This map has minimal conflicts and rectifies that
same pipe apparatus well.

Fig. 7a shows the pose graphs that correspond to the two
maps, from an overhead view. The top of the figure shows
the pose graph from the unfiltered data. This graph has many
outliers and is cluttered, with many observations contributing
to the inaccuracy in the map. The path generated from the
filtered data clearly shows the gait cycles, and maintains a
fairly straight path with no outliers.

C. Sidewind
The sidewind gait was tested over multiple cycles moving

sideways. Fig. 6a shows a map generated from unfiltered
sensor data. Similarly to the slither experiment, the algorithm
has trouble rectifying the position of the objects such as the
pipes. Fig. 5b shows the map generated from a similar run

using the trust-function approach. This map also has several
conflicts due to motion artifacts from the sidewinding gait,
but the artifacts are clearly reduced from the filtering.

Fig. 7b shows the pose graphs that correspond to the two
maps, from an frontal view. The top of the figure shows the
pose graph from the unfiltered data. The difference between
the pose graphs for sidewind is much less pronounced than
for slither, however the lower number of nodes makes the
path simpler and helps the map stay more accurate.

VI. EXTENSIONS

The technique that has been presented in this paper applies
beyond snake robots. Another example of a robot that might
benefit from dynamic data confidence is the dynamic single
actuator vertical climbing robot [11]. This robot uses its
actuator and the friction from its environment to climb



(a) Pose Graphs for Slither Gait (b) Pose Graphs for Sidewind Gait

Fig. 7: These are the pose graphs generated by the open source SLAM algorithm, where each pose consists of a red, green
and blue axis connected by white lines representing the graph edges. The unfiltered path is above and the filtered path is
below. The gaits used for these paths are a) slither and b)sidewind.

vertically in a simplistic manner. This robot cycles between a
power phase and a flight phase. This action can be modeled
as a gait.

A sensor placed on this robot to determine distance from
the ground could be filtered to provide useful information
to the robot, but would become very unreliable during the
powered phase of the robot’s motion, as this phase consists of
high impact with the environment, causing significant vibra-
tion in the robot’s body. Therefore, it could be beneficial to
create a function that exhibits high trust of the sensor during
the flight phase, specifically when the sensor is pointing
down at the apex of the flight arc, and low confidence close
to the impact point of the cycle.

This function model also provides useful information in
gait design. For the modular snake robots, cycling the gait
at high speeds can help the robot locomote, but can cause
the camera on the snake to have too much motion blur to be
useful for odometry or intuitive remote operation. Given a
reasonable motion model, or partial motion model using the
virtual chassis, functions generated above will show when
in the gait information will be most useful, and therefore
when a gait designer might temporarily slow down the gait
to gather sensor data. This way the majority of the gait can
cycle at high speed, and the sensors will still be able to pick
up data to perform visual odometry and/or SLAM.

VII. CONCLUSION

With both of the experiments run, the overall quality of
the maps improved, and the pose graphs were much simpler
with the filtering. In SLAM, the quality of the map and the
quality of the path are directly related, since updates on the
map are made based off estimations of the path and visa
versa. Thus having static errors in the map will result in a
less accurate pose graph.

Having a more sparse pose graph also allows the memory
and processing power to remain manageable for longer
runtimes. The filter also seems to make the pose graphs much
more human readable, which is important especially for the
modular snake robots which are teleoperated. The additional
situational awareness gained from the filtering can greatly
improve the ability of the operator to pilot the snake robots.

These results are expected to extend beyond the scope of
SLAM and into other filtering applications.

ACKNOWLEDGMENT

The authors would like to thank the Biorobotics Lab at
the Robotics Institute. In particular, special thanks go out
to David Rollinson, Matthew Tesch, Austin Buchan, and
Bradford Neuman.

REFERENCES

[1] R. E. Kalman, “A new approach to linear filtering and
prediction problem,” Journal of Basic Engineering Transactions,
vol. 82, no. 1, pp. 34–45, 1960. [Online]. Available:
http://ci.nii.ac.jp/naid/10006538775/en/

[2] R. Ohap and A. Stubberud, “A technique for estimating the state of a
nonlinear system,” IEEE Transactions on Automatic Control, vol. 10,
no. 2, pp. 150 – 155, Apr 1965.

[3] M. Tesch, K. Lipkin, I. Brown, R. Hatton, A. Peck, J. Rembisz,
and H. Choset, “Parameterized and scripted gaits for modular snake
robots,” Advanced Robotics, vol. 23, pp. 1131–1158(28), June 2009.

[4] K. Lipkin, I. Brown, A. Peck, H. Choset, J. Rembisz, P. Gianfortoni,
and A. Naaktgeboren, “Differentiable and Piecewise Differentiable
Gaits for Snake Robots,” in Proceedings of IEEE/RSJ Intl. Conference
on Intelligent Robots and Systems, San Diego, CA, USA, Oct 29 - Nov
2 2007, pp. 1864–1869.

[5] D. Rollinson and H. Choset, “Virtual chassis for snake robots,” in
IEEE International Conference on Intelligent Robots and Systems
(accepted), 2011.

[6] S. Thrun and M. Montemerlo, “The graph SLAM algorithm with appli-
cations to large-scale mapping of urban structures,” The International
Journal of Robotics Research, vol. 25, no. 5-6, pp. 403–429, 2006.

[7] A. G. O. Mutambara, Decentralized Estimation and Control for
Multisensor Systems, 1st ed. Boca Raton, FL, USA: CRC Press,
Inc., 1998.



[8] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-up robust
features (SURF),” Comput. Vis. Image Underst., vol. 110, pp. 346–359,
June 2008.

[9] M. A. Fischler and R. C. Bolles, “Random sample consensus: a
paradigm for model fitting with applications to image analysis and
automated cartography,” Commun. ACM, vol. 24, pp. 381–395, June
1981.

[10] M. Muja and D. G. Lowe, “Fast approximate nearest neighbors with
automatic algorithm configuration,” in International Conference on
Computer Vision Theory and Application VISSAPP’09). INSTICC
Press, 2009, pp. 331–340.

[11] A. Degani, A. Shapiro, H. Choset, and M. Mason, “A dynamic single
actuator vertical climbing robot,” in Intelligent Robots and Systems,
2007. IROS 2007. IEEE/RSJ International Conference on, 29 2007-
nov. 2 2007, pp. 2901 –2906.


